

MATHEMATICS EXTENSION 1 (INCORPORATING EXTENSION 2) YEAR 12 COURSE

Name:

Initial version by H. Lam, November 2013 (former 3U content), July 2014 (Strong Induction). Last update February 3, 2025 Various corrections by students and members of the Department of Mathematics at North Sydney Boys High School and Normanhurst Boys High School.

Acknowledgements Pictograms in this document are a derivative of the work originally by Freepik at http://www.flaticon.com, used under CC BY 2.0. Parts of this document are also sourced from:

- Brown (2008)
- Fitzpatrick (1984, §23.4)
- (Haese, Haese, & Humphries, 2015b, Ch 6)

Symbols used

A Beware! Heed warning.

- Provided on NESA Reference Sheet
- Facts/formulae to memorise.
- (x1) Mathematics Extension 1 content.
- (x2) Mathematics Extension 2 content.
- Literacy: note new word/phrase.
- Further reading/exercises to enrich your understanding and application of this topic.
- Syllabus specified content
- $\mathbf{\hat{V}}$ Facts/formulae to understand, as opposed to blatant memorisation.
- $\mathbb N~$ the set of natural numbers
- $\mathbbm{Z}~$ the set of integers
- ${\mathbb Q}\,$ the set of rational numbers
- ${\mathbb R}\,$ the set of real numbers
- $\forall \ \text{ for all }$

- For a thorough understanding of the topic, *every* question in this handout is to be completed!
- Additional questions from *CambridgeMATHS Year 12 Extension 1* and/or *CambridgeMATHS Extension 2* will be completed at the discretion of your teacher.
- Remember to copy the question into your exercise book!

Syllabus outcomes addressed

- ME12-1 applies techniques involving proof or calculus to model and solve problems
- MEX12-2 chooses appropriate strategies to construct arguments and proofs in both practical and abstract settings

Syllabus subtopics

- $\bf ME-P1 \ \ Proof$ by Mathematical Induction
- MEX-P2 Further Proof by Mathematical Induction

Learning intentions & outcomes

(x₂) Further proofs

Content/learning intentions

19.5 Prove results using mathematical induction where the initial value of n is greater than 1, and/or n does not increase strictly by 1, for example

Prove that $n^2 + 2n$ is a multiple of 8 if n is an even positive integer

19.6 Understand and use sigma notation to prove results for sums, for example:

$$\sum_{n=1}^{N} \frac{1}{(2n+1)(2n-1)} = \frac{N}{2N+1}$$

19.7 Understand and prove results using mathematical induction, including inequalities and results in algebra, calculus, probability and geometry. For example:

- > Prove inequality results, e.g. $2^n > n^2$ for $n \in \mathbb{Z}^+$, $n \ge 5$
- ▶ Prove results in calculus, e.g. $\frac{d}{dx}(x^n) = nx^{n-1}$ for $n \in \mathbb{Z}^+$
- ▶ Prove results related to probability, e.g. the Binomial Theorem $(x+a)^n = \sum_{r=0}^n \binom{n}{r} x^{n-r} a^r$
- Prove geometric results, e.g. The sum of the exterior angles of an n-sided plane convex polygon is 360°

19.8 Prove De Moivre's Theorem for integral powers using induction (ACMSM083)

Contents

Ι	(x_1) (x_2) Mathematics Extension 1 and 2 common content	7
1	Induction into (mathematical) induction 1.1 Statements & propositions 1.2 General structure of induction proofs 1.2.1 Plain English 1.2.2 Logic	8 8 9 9 9
2	Proofs involving sum/products 2.1 Introduction 2.2 Basic proofs 2.3 Harder proofs 2.4 When induction fails 2.4.1 Further questions	10 10 11 14 17 18
3	Proofs involving divisibility 3.1 Divisibility revisited 3.2 When induction fails 3.2.1 Further questions	20 20 27 28
II	(x2) Mathematics Extension 2 only content	29
4	Proofs involving harder sums & divisibility 4.1 Sum 4.2 Divisibility 4.2.1 Further questions	30 30 32 33
5	Proofs involving inequalities, calculus, geometry and well known theorems 5.1 Inequalities 5.1.1 Further questions 5.2 Functions/Calculus proofs 5.3 Geometric proofs 5.4 Well known theorems	34 34 38 39 42 45
6	Proofs involving recurrence relations 6.0.1 Further questions	48 53

References

Part I

7

(x1) (x2) Mathematics Extension 1 and 2 common content

Section 1

Induction into (mathematical) induction

🔁 Learning Goal(s)

E Knowledge **Vunderstanding** Skills Steps involved for a formal Prove What is proof by induction vs summation and induction proof proof by deduction divisibility results by induction **By** the end of this section am I able to: 19.1Understand the nature of inductive proof, including the 'initial statement' and the inductive step 19.2Prove results using mathematical induction 19.3Identify errors in false 'proofs by induction', such as cases where only one of the required two steps of a proof by induction is true, and understand that this means that the statement has not been proved

1.1 Statements & propositions

• Mathematical induction is a *method* to prove a of statements/propositions, usually many.

Example 1		
State whether these propositions a	e true or	false:
Proposition 1:	(T/F)	1 + 3 = 4
Proposition 2:	(T/F)	$2 \times 7 = 15$
Proposition 3:	(T/F)	Mr Ho is handsome

- Notation for propositions:
 - ♦ (Serious) algebra required.

Ø	1st proposition: denote	🖸	k th proposition:	denote	 •
Ø	2nd proposition: denote \dots		n th proposition:	denote	 •

1.2 General structure of induction proofs

1.2.1 Plain English

Proving a of many propositions with

1.2.2 Logic

- (normally, the first proposition, or):
 - Prove P(1), is true
-:
 - Assume some arbitrary statement P(k) is true.
 - (.....)
 - If P(k) is true, and overall all the statements are true, then the subsequent statement P(k+1) should also be true.

 $\ast\,$ Use algebraic skills to show the k+1-th statement is also true.

Natch multimedia

"Dominos": https://fb.watch/9BL-OlVXWX/

Example 2

Domino analogy – well constructed set of dominos.

• Truth of k-th proposition \rightarrow k-th domino knocked down.

• Hence, all dominos will eventually fall.

Section 2

Proofs involving sum/products

2.1 Introduction

Example 3 Prove by induction: $1+2+3+\dots+n=\frac{n}{2}(n+1)$ where $n \in \mathbb{N}$

Solution

• Let P(n) be the proposition

$$1 + 2 + 3 + \dots + n = \frac{n}{2}(n+1)$$

• P(1):

•

(Hypothesis) Assume that P(k) is true for some $k \in \mathbb{N}$, 1 < k < n, i.e.

• Examine P(k+1):

(b) Use induction to show that

Example 7

 $1 \times 1! + 2 \times 2! + 3 \times 3! + \dots + n \times n! = (n+1)! - 1$

2.4.1 Further questions

1. Prove by mathematical induction that

$$1^{2} + 3^{2} + \dots (2n-1)^{2} = \frac{1}{3}n(2n-1)(2n+1)$$

 $\forall n\in\mathbb{Z}^+,\,n\geq 1.$

2. (a) By considering the sum of the terms of an arithmetic series, show that

$$(1+2+\cdots+n)^2 = \frac{1}{4}n^2(n+1)^2$$

(b) Use induction to prove

$$1^3 + 2^3 + \dots + n^3 = (1 + 2 + \dots + n)^2$$

 $\forall n \ge 1.$

3. Use mathematical induction to prove that, for all positive integers *n*,

$$1 + 2 + 4 + \dots + 2^{n-1} = 2^n - 1$$

4. Use the Principle of Mathematical Induction to show that

$$2 \times 1! + 5 \times 2! + 10 \times 3! + \dots + (n^2 + 1)n! = n(n+1)!$$

 $\forall n \in \mathbb{Z}^+.$

5. Use mathematical induction to prove that, for integers $n \ge 1$,

$$1 \times 3 + 2 \times 4 + 3 \times 5 + \dots + n(n+2) = \frac{n}{6}(n+1)(2n+7)$$

6. Let $S(n) = \frac{1}{2!} + \frac{2}{3!} + \frac{3}{4!} + \dots + \frac{n}{(n+1)!}$, where $n \in \mathbb{Z}^+$.

(a) Use induction to show that

$$S_n = 1 - \frac{1}{(n+1)!}$$

 $\forall n \in \mathbb{Z}^+.$

- (b) Find the value of $\lim_{n \to \infty} S_n$.
- (c) Find the smallest positive integer n such that $|S_n 1| < 1 \times 10^{-6}$.
- 7. Use induction to show that for all positive integers $n \ge 1$,

$$\frac{1}{1} + \frac{1}{1+2} + \frac{1}{1+2+3} + \dots + \frac{1}{1+2+3+\dots+n} = \frac{2n}{n+1}$$

8. Use Mathematical Induction to show that for all positive integers $n \ge 1$,

$$\frac{3}{1 \times 2 \times 2} + \frac{4}{2 \times 3 \times 2^2} + \dots + \frac{n+2}{n(n+1)2^n} = 1 - \frac{1}{(n+1)2^n}$$

9. Use mathematical induction to prove that

$$\frac{1}{1\times3} + \frac{1}{3\times5} + \dots + \frac{1}{(2n-1)(2n+1)} = \frac{n}{2n+1}$$

for all positive integers n.

10. (a) Use the fact that

$$\tan(\alpha - \beta) = \frac{\tan \alpha - \tan \beta}{1 + \tan \alpha \tan \beta}$$

to show that

$$1 + \tan n\theta \tan(n+1)\theta = \cot \theta (\tan(n+1)\theta - \tan n\theta)$$

- **11.** (a) Prove that

$$\frac{\cos A - \cos(A + 2B)}{2\sin B} = \sin(A + B)$$

(b) **A** By rewriting $\cos 2\theta$ in terms of $\sin^2 \theta$ or otherwise, prove

 $\sin\theta + \sin 3\theta + \sin 5\theta + \dots + \sin(2n-1)\theta = \frac{1-\cos 2n\theta}{2\sin\theta}$

for all $n \in \mathbb{N}$

Section 3

Proofs involving divisibility

3.1 **Divisibility revisited**

Example 11

- Fill in the spaces
- If 20 is divisible by 5, then \dots .
- If $4^n 1$ is divisible by 3, then

Prove that $4^n - 1$ is divisible by $3 \forall n \in \mathbb{N}$.

NO	RM	ANH	URST	BO	YS'	HIGH	SC	HOOL
		+				+		

Example 16

Prove that $3^n + 7^n$ is divisible by 10, if n is odd.

Important note

Inductive hypothesis still requires the assumption of the truth P(k) where k = 2m+1, but need to examine $P(\ldots)$.

NORMANHURST BOYS' HIGH SCHOOL

Example 17
Prove that n³ + 5n is divisible by 3 ∀n ∈ N.
▲ (2013 CSSA Ext 1 Q14) Prove it's also divisible by 6. NORMANHURST BOYS' HIGH SCHOOL

3.2.1 Further questions

- **1.** Use mathematical induction to prove that, $\forall n \in \mathbb{N}$, $13 \times 6^n + 2$ is divisible by 5.
- **2.** Prove that $4^n + 14$ is a multiple of $6 \forall n \ge 1$.
- **3.** Use the mathematical induction to prove that $7^{2n-1} + 5$ is divisible by $12 \forall n \in \mathbb{N}$.

Part II

x2 Mathematics Extension 2 only content

Section 4

Proofs involving harder sums & divisibility

Learning Goal(s)

E Knowledge

Steps involved for a formal induction proof

📽 Skills

Algebraic manipulation of P(k)to fit into the expression for P(k+1)

Vunderstanding

Different proofs require various algebraic techniques

Solution By the end of this section am I able to:

- 19.5 Prove results using mathematical induction where the initial value of n is greater than 1,and/or n does not increase strictly by 1.
- 19.6 Understand and use sigma notation to prove results for sums, for example:

$$\sum_{n=1}^{N} \frac{1}{(2n+1)(2n-1)} = \frac{N}{2N+1}$$

- 19.7 Understand and prove results using mathematical induction, including inequalities and results in algebra, calculus, probability and geometry.
- 19.8 Prove De Moivre's Theorem for integral powers using induction

4.1 **Sum**

Important note

Extension 2 sum proofs build upon Extension 1 proofs with

• sigma notation

• *n* commencing at values greater than 1, or not necessarily increasing by 1

31

Example 20 Prove by induction for $n \in \mathbb{N}$.

$$\sum_{k=1}^{n} \frac{k}{2^k} = 2 - \frac{n+2}{2^n}$$

Ex 2E (Sadler & Ward, 2019)

• Q1, 3, 20

NORMANHURST BOYS' HIGH SCHOOL

4.2 **Divisibility**

Important note

Extension 2 divisibility proofs build upon Extension 1 proofs with

• Polynomial division

Ex 2E (Sadler & Ward, 2019)

• 2, 4, 5, 16

4.2.1 Further questions

Some questions are sourced from Haese, Haese, and Humphries (2015a).

1. Let

 $S_n = 1 \times 2 + 2 \times 3 + \dots + (n-1) \times n$

Use mathematical induction to prove that, for all integers n with $n \ge 2$,

$$S_n = \frac{1}{3}(n-1)n(n+1)$$

- **2.** Prove that $2^{3n} 3^n$ is divisible by $5 \forall n \ge 1$.
- **3.** Use induction to show that $9^{n+2} 4^n$ is divisible by 5 for all positive integers *n*.
- 4. (a) Use the method of mathematical induction to show that if x is a positive integer then $(1+x)^n 1$ is divisible by $x \forall n \in \mathbb{N}$.
 - (b) Factorise $12^n 4^n 3^n + 1$. Without using induction again, use the previous part to show deduce that $12^n 4n 3^n + 1$ is divisible by 6 for all integers $n \ge 1$.
- 5. Prove by induction: $7^n 4^n 3^n$ is divisible by 12 for all $n \in \mathbb{Z}^+$
- 6. Prove by induction: $2^{4n+3} + 3^{3n+1}$ is divisible by $11 \forall n \in \mathbb{Z}, n \ge 0$.
- 7. Prove by induction: $\frac{2^n (-1)^n}{3}$ is an odd number for all $n \in \mathbb{Z}^+$.
- 8. Prove by mathematical induction that

$$\sum_{r=1}^{n} r \times r! = (n+1)! - 1$$

9. A Use mathematical induction to prove for all integers $n \ge 3$,

$$\left(1-\frac{2}{3}\right)\left(1-\frac{2}{4}\right)\left(1-\frac{2}{5}\right)\cdots\left(1-\frac{2}{n}\right) = \frac{2}{n(n-1)}$$

10. A Prove by induction that, for all integers $n \ge 1$,

$$(n+1)(n+2)\cdots(2n-1)2n = 2^n (1 \times 3 \times 5 \times \cdots \times (2n-1))$$

11. A Prove by induction that

$$n^{3} + (n+1)^{3} + (n+2)^{3}$$

is divisible by $9 \forall n \in \mathbb{Z}^+$.

Section 5

Proofs involving inequalities, calculus, geometry and well known theorems

5.1 Inequalities

- If x > 5, then
- Look for quantity larger/smaller than what needs to be proven.

Example 21 Prove for $n \ge 2$, that

 $3^n > 1 + 2n$

Solution

- Let P(n) be the proposition $3^n > 1 + 2n, n \ge 2$.
- Base case P(2):

• Inductive step:

NORMANHURST BOYS' HIGH SCHOOL

37

 $12^n > 7^n + 5^n$

‡**⊒** Further exercises

Ex 2E (Sadler & Ward, 2019)

• 6-8, 15, 18

NORMANHURST BOYS' HIGH SCHOOL

5.1.1 Further questions

- 1. Use the principle of mathematical induction to show that $4^n 1 7n > 0$ for all integers $n \ge 2$.
- 2. Use the method of Mathematical Induction to show that $n! > 2^n$ for all positive integers $n \ge 4$.
- **3.** Use Mathematical Induction to show that $5^n > 4^n + 3^n$ for all integers $n \ge 3$.
- 4. (a) Show that for k > 0,

$$\frac{1}{(k+1)^2} - \frac{1}{k} + \frac{1}{k+1} < 0$$

(b) Use mathematical induction to prove that $\forall n \geq 2, n \in \mathbb{Z}$

$$\frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \dots + \frac{1}{n^2} < 2 - \frac{1}{n}$$

5.2 Functions/Calculus proofs

Example 27

[2009 Ext 1 HSC Q7]

i.

Use differentiation from first principles to show that

$$\frac{d}{dx}(x) = 1$$

ii. Use mathematical induction and the product rule for differentiation to prove that $\frac{d}{dx}(x^n) = nx^{n-1}$ for $n \in \mathbb{Z}^+$.

1

Example 28 Use induction to show that

 $\cos(x + n\pi) = (-1)^n \cos x$

 $\forall n \in \mathbb{Z}^+, n \ge 1.$

Example 29 A function f(x) is such that f(x) > 0 for $x \in \mathbb{R}$ and $f(a + b) = f(a) \times f(b)$ for $a, b \in \mathbb{R}$.

- (a) Show that f(0) = 1 and deduce that $f(-x) = \frac{1}{f(x)}$.
- (b) Use induction to show that

$$f(nx) = \left(f(x)\right)^n$$

for all positive integers n.

(c) Without using induction again, deduce that

$$f(-nx) = \left(f(x)\right)^{-1}$$

for all positive integers n.

					GEOMETRIC PROOFS	
3 G e	eometric	proofs				
	Examp	ole 30			·······	
Prove	by induct	ion, that the s	sum of the angle	es of a polygo	n of n sides is $(2n-4)$	
rignt a	angles, who	ere $n \geq 3$.				
	· · · · · · · · · · · · · · · · · · ·				····· ···· ···· ···· ···· ···· ···· ····	
			· · · · · · · · · · · · · · · · · · ·			
••••		· · · · · · · · · · · · · · · · · · ·				
			· · · · · · · · · · · · · · · · · · ·			
····;		· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·	
	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
						· · · · · · · · · · · · · · · · · · ·
•••••						
					NORMANHURST BOYS' HIGH SCHOOL	
						- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1

۔ T		2 E	• • •	xa 31	i mj S	ole adl	31 er	anc		Var	.d (20		Sı	inr	0050	∍ tŀ	ner	- ai	re 1		nes	in	ิลา	olane	e ar	rai	ומיפ	d	•	· · · · · · · · · · · · · · · · · · ·
su	ich	tha	at :	no for	th	ree	of	the	e li		s a	re		icu	rre	nt,	an	nd	no	tw	ε Ο ((2	of t	he	lin		e p		alle	l.		· · · · · · ·
Sr	10V :	v tr		101	: n :	2	1, 1 :	n s'	ucr. :	1 11	nes :	; a	:	ie i	: :	pı	ane :	e 11.	ito :	$\overline{2}$	(<i>n-</i> :	+	n ⊣ :	- 2 _.) reg	ions	3.	:			
									· · · · · ·									· · · · ·			· · · · · · · · · · · · · · · · · · ·			· · · · · · ·			· · · · · ·		· · · · · ·		
· · · · ·					· · · · · ·				· · · · · · · ·		**************************************	· · · · · ·		· · · · · ·	* * * * * * * * * * * * * * * * * * *		· · · · · ·			· • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • •		· · · · · · ·	· · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·		•••
		•••••								· · · · · ·							• • • • • •										 		· · · · · ·		
		••••••		•••••				0		· · · · · ·				•••••			• • • • • • • • •	· · · · ·			• • • • • • •						••••• •••• ••••		· · · · ·		
		•••••••		••••• •••••		·)· · · · · ·		0 • • • • • 0 • • • • • 0 • • • • •		•••••	· · · · · ·		÷			(* * * * 	 	· · · · ·	 	((* * * * * (* * * * * (* * * * *				•	 		· · · · · ·		•••
				·•••••				0 • • • • • 0 • • • • • 0 • • • • •			· · · · · ·		÷		•		 					(- 	(
••••		••••••		••••••	•••••• ••••••			•••••		· · · · · ·																	· · · · · · · · · · · · · · · · · · ·		· · · · ·		•••
											· · · · · ·																 				
																		· · · · ·									 				
		• • • • • •		•••••	· · · · · ·	· ·					· · · ·		 	•••••	· · · ·		· · · ·			· · · · ·	•						····		· · · · · ·	· · · · · · · · · · · · · · · · · · ·	•••
	•			•••••	• • • • • •			· · · · · · ·		· • • • • • • • • • • • • • • • • • • •				•	· · · · ·		•	· · · · ·		· · · · ·	• • • • • • • • • • • • • • • • • • •	· · · · ·	• • • • • • • • • • • • • • • • • • •				· · · · · · · · · · · · · · · · · · ·		· · · · · ·		•••
				•••••	• • • • • • •			- - - - - - - - - - - - - - - - - - -		· • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • •			•••••			•			· · · · ·	• • • • • • • • • • • • • • • • • • •		• • • • • • • • • • • • • • • • • • •				· · · · · ·		· { • • • • • · · ·		•••
	•			· · ·	• • • • • • •	•		- - - - - - - - - - - - - - - - - - -	•	· · · · ·							•			· · · · ·	• • • • • • • • •		• • • • • • • • • • • • • • • • • • •				· · · · · ·		· • • • • • • • • • • • • • • • • • • •		
• • • •	•	• • • • • •		•••••	• • • • • • •	•		· · · · · ·	• • • • • • • • • •	· · · · ·	· · · · · ·	· · · · ·		•••••	*		•	· · · · ·		· · · · ·	• • • • • • • • • • • • • • • • • • •		•				· · · · ·		• • • • • • • • • • • • •		
· · · · · ·	· · · · · · · · · · · · · · · · · · ·				· · · ·				· · · · ·		· · · · · · · ·						• • • • • • • • • • • • • • • • • • •			· · · · ·	• • • • • • • • • • • • • • • • • • •		· · · · ·				· · · · · ·		· · · · · · ·		
· · · · · · ·					• • • • • •				· · · · ·		• • • • • • • • • • • • • • • • • • •				• • • • • • • • • • • • • • • • • • •		• • • • • • • •	· · · · ·		· · · · · ·	• • • • • • • • • • • • • • • • • • •		•				· · · · · ·		· · · · · · · · · · · · · ·		
														· · · · · ·			•		· · · ·	· · · · · · · · · · · · · · · · · · ·							· · · · · ·		· * • • • • • •	· · · · · · · · · · · · · · · · · · ·	
									· · · · · ·					· · · · · · · · · · · · · · · · · · ·			•			· · · · · · ·	•			· · · · · ·			· · · · · ·		· • • • • • • • • • • • • • • • • • • •		· · · · ·
					· · · · · · · · · · · · · · · · · · ·				- ** * * * * * * * * * * * *	· • • • • • • • • • • • • • • • • • • •	· · · · · · · · · · · · · · · · · · ·			· · · · · · ·	· · · · · · · · · · · · · · · · · · ·		- - - - - - - - - - - - -	· · · · ·	-	· • • • • • • • • • • • • • • • • • • •	-		-				· · · · · ·		· • • • • • • • • • • • •		
									- - - - - - - - - - - - - - - - - - -		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		· • • • • •				- - - - - - - - - - - - - - - - - - -		- - - - - - - - - - - - - - - - - - -				· · · · ·		· • • • • • • • • • • • • • • • • • • •		
łMA	NHU	JRST	BOY	S' H	IGH	SCH	OOL								*																

Example 32

[2020 Ext 2 HSC Sample Q12] Two vertical walls and the floor meet at a corner of a room. One cube is placed in the corner. A solid shape is then formed by placing identical cubes to form horizontal rows on the floor against the walls or by stacking vertically against the two walls. An example is the solid shape shown in the diagram. This example is formed from nine cubes.

Let n be the number of cubes used to make a solid shape in this way.

Use mathematical induction to show that the number of exposed faces of the cubes in this shape is 2n + 1.

and the services and the services are services as a service of the service of the

Ex 2E (Sadler & Ward, 2019) - note some of already been done in class.

• Q12-14

5.4 Well known theorems

Example 33

The Binomial Theorem

(a) Prove Pascal's formula:

$$\binom{n+1}{k} = \binom{n}{k} + \binom{n}{k-1}$$

(b) Hence, prove the *Binomial Theorem* by induction for $n \ge 1$:

$$(x+y)^n = \sum_{r=0}^n \binom{n}{r} x^{n-r} y^r$$

NORMANHURST BOYS' HIGH SCHOOL

		•		•								•	:		•		 	•						•		•••••••	••••	••••••	•••	
			 		••••	 				:	 		÷	÷	 :	•••••	 •••••	 	•••••	••••	•••••••	·			÷	•••••••	•••	•••••••		
	46			•	÷		•			:		•			:				τ λ		K'N(Ŵ	ти	OPEN	C.		•••••••••••••••••••••••••••••••••••••••	•••••••	•••	
 			 		<u></u>	<u></u>	<u> </u>	<u></u>	<u></u>	<u></u>	<u></u>		<u></u>	<u></u>	<u></u>		 <u></u>		• • •		- KINC	:	1111	OREM		•••••••	•••	••••••		
 				· · ·			•					• •	:		* * *			· · · · · ·				•		• · · · · · · · · · · · · · · · · · · ·			•••••••••••••••••••••••••••••••••••••••		•••	
 · • • • • • •			 																					· · · · · · · · · · · · · · · · · · ·		••••••	••••••			
				• •																				• • • • • • • • • • • • • • • • • • •						
		•		• •								• •			•									• • • • • • • • • • • • • • • • • • •						
 · · · · · ·		•		· · · · · · · · · · · · · · · · · · ·								· · · · · · · · · · · · · · · · · · ·																		
				• •			•					•	-											•						
												•												• • • • • • • • • • • • • • • • • • •						
										-												:		•						
				•																										
																	 							· · · · · · · · · · · · · · · · · · ·						
 : 			 															 												
																								• • • • • • • • • • • • • • • • • • •						
 : ; ;			 									: 					 	 				 								
 : ;		; ;;	 														 	 									;			
 :			 								: 						 	 	····-											•••
				·····			: 										 													
			 								: 	: :	÷				 	 	•••••		· · · ·	• • • • • • • •				•••				•••
																	 							•						
 			 							÷			÷	÷			 	 	•••••		••••	• • • • • • •				•••	•••	•••		•••
																	 					• • • • • • •		· · · · · · · · · · · · · · · · · · ·						
 · • • • • • •			 	·•••••••••••••••••••••••••••••••••••••	••••				••••	÷			÷	÷			 	 	•••••	••••	••••	• • • • • • •			÷	•••	•••	•••••••		•••
				•						÷		•	÷				 							•			•••		•••	
 · • • • • • •			 	·	••••	· · · · ·	· · · · · ·		••••	÷			÷···				 •••••	 	•••••	••••	· ·	• • • • • • •			•	•••	•••	•••	•••	••••
													-		:		 					• • • • • • • •		•	÷		•••		•••	
			 						•••••				÷	-			 	 	•••••	••••	•••	•			•	•••	•••	•••	•••	•••
 <u>.</u>			 	••••••		· · · · · ·	••••••	•••••	•••••		· · · · · ·	•••••	÷		·····		 •••••	 	••••	••••	•••	• • • • • • • •		· · · · · · · · · · · ·	• • • • •	•••••••	•••	••••••	•••	•••
				•																		• • • • • • •		· · · · · · · · · · · · · · · · · · ·			•••••••			
 <u>.</u>							· · · · · · · · ·				· · · · · ·				·····		•••••		••••		•••	• • • • • • • •				••••••	•••	••••••		••••••••
				•			••••• •								:							:		• • • • •			:			
														-									(· · · · · · · · · · · · · · · · · · ·						
 																								· · · · · · · · · · · · · · · · · · ·						
 																								•						
			 	· · · · · · · · · · · · · · · · · · ·																										
			 	• •													 													
 · · ·			 												: 		 		•••••											••••
		· · · · · · · · · · · · · · · · · · ·	 	· · · · · · · · · · · · · · · · · · ·								* * *					 							•						
			 		••••				••••	÷			÷	: : :	: : :		 		• • • • •			·		· · · · · · · · · · · · · · · · · · ·	÷	•••	•••	•••		
				· · · · · · · · · · · · · · · · · · ·								• • •	÷		:		 													
 :			 		••••				:					:	: : :	•••••	 		•••••		••••				÷	•••	•••	•••		••••
-		· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·								· · · · · · · · · · · · · · · · · · ·			: 									· · · · · · · · · · · · · · · · · · ·		••••				
			 	• • • • • • •													 	 NOI	RMAN	HUR	ST BO	OYS' H	IGH	SCHOC	Ľ	•••••••	••••••	•••••		•••••••••••••••••••••••••••••••••••••••
		• • • • •		· · · · · · · · · · · · · · · · · · ·			•	••••		:		• •	÷		• • •		 							• • • • • • • • • • • • • • • • • • •	:					
 												• • •	÷			••••	· · · · · · ·		•••••	••••	•••••••			· · · · ·	: ::::	•••	•••••••••••••••••••••••••••••••••••••••	•••••••		••••••••
• • • • • •				· · · · · · · · · · · · · · · · · · ·								· · · · · · · · · · · · · · · · · · ·			· • •			• • • • •				:		· · · · · · · · · · · · · · · · · · ·			••••			

Section 6

Proofs involving recurrence relations

Example 35 [2011 NSGHS Ext 2 Trial Q8] The sequence u_1, u_2, u_3, \ldots is defined by

$$u_1 = 2$$
 and $u_{k+1} = 2u_k + 1$

i. Prove by induction that, for all integers $n \ge 1$,

$$u_n = 3 \times 2^{n-1} - 1$$

ii. Show that

$$\sum_{r=1}^{n} u_r = u_{n+1} - (n+2)$$

48

3

49 **Example 36** [2018 Independent Ext 2 Trial Q14] (3 marks) A sequence of numbers T_1, T_2, T_3 is given by $T_1 = 2$ and $T_n = \frac{5T_{n-1} - 3}{3T_{n-1} - 1}$ for $n \ge 2$. Use mathematical induction to show that $T_n = \frac{3n+1}{3n-1}$ for all positive integers $n \ge 1$. NORMANHURST BOYS' HIGH SCHOOL

50

Example 37

[2008 NEAP Ext 2 Trial Q7] (4 marks) A sequence is defined by the relationship

$$u_{n+1} = \frac{1}{2} \left(u_n + \frac{2}{u_n} \right)$$

where $u_1 = 1$ and $n \in \mathbb{Z}^+$.

Use mathematical induction to show that

$$\frac{u_n - \sqrt{2}}{u_n + \sqrt{2}} = \left(\frac{1 - \sqrt{2}}{1 + \sqrt{2}}\right)^{2^{n-1}}$$

NORMANHURST BOYS' HIGH SCHOOL

51

Example 38 16 JRAHS Ext 2 Trial Q13 A secu

[2016 JRAHS Ext 2 Trial Q13] A sequence is defined by the formula $U_0 = 0$ and $U_n = \sqrt{U_{n-1} + 2}$ for $n = 1, 2, 3, \cdots$.

Prove by mathematical induction that

$$U_n = 2\cos\left(\frac{\pi}{2^{n+1}}\right)$$

for $n = 0, 1, 2, 3 \cdots$

A Current syllabus would start at n = 1. NORMANHURST BOYS' HIGH SCHOOL

Example 39

[1981 HSC Q8] Using induction, show that for each $n \in \mathbb{Z}^+$, there are unique positive integers p_n and q_n such that

$$\left(1+\sqrt{2}\right)^n = p_n + q_n\sqrt{2}$$

Show also that $(p_n)^2 - 2(q_n)^2 = (-1)^n$. *Hint:* use induction!

Further.exercises Ex 2E (Sadler & Ward, 2019) • Q9, 17

NORMANHURST BOYS' HIGH SCHOOL

6.0.1 Further questions

Source: Haese et al. (2015a)

1. A sequence is defined by $u_1 = 1$, $u_{n+1} = 2u_n + 1$, $\forall n \in \mathbb{Z}^+$.

Prove that $u_n = 2^n - 1, \forall n \in \mathbb{Z}^+$.

2. A sequence t_n is defined by $t_1 = 5$ and $t_{n+1} = t_n + 8n + 5$, $\forall n \in \mathbb{Z}^+$.

Prove that $t_n = 4n^2 + n$.

3. A sequence $u_1 = 1$, and subsequent terms are $u_{n+1} = 2 + 3u_n$, prove that

$$u_n = 2\left(3^{n-1} - 1\right)$$

4. A sequence is defined by $t_1 = 2$ and $t_{n+1} = \frac{t_n}{2(n+1)}$ for all $n \in \mathbb{Z}^+$.

Prove that $t_n = \frac{2^{2-n}}{n!}$.

5. A sequence is defined by
$$u_1 = 1$$
 and $u_{n+1} = u_n + (-1)^n (n+1)^2$ for all $n \in \mathbb{Z}^+$

Prove that $u_n = \frac{(-1)^{n-1}n(n+1)}{2}$

- 6. A sequence is defined by $t_1 = 1$, $t_{n+1} = t_n + (2n+1)$, $\forall n \in \mathbb{Z}^+$.
 - (a) By finding t_n for n = 2, 3 and 4, conjecture a formula for t_n in terms of n only (not recursively)
 - (b) Prove that your conjecture is true using mathematical induction.
 - (c) Find the value of t_{20} .
- 7. Prove that if $u_1 = 9$ and $u_{n+1} = 2u_n + 3(5^n)$, then $u_n = 2^{n+1} + 5^n$, $\forall n \in \mathbb{Z}^+$.
- 8. Prove that if $t_1 = 5$ and $t_{n+1} = 2t_n 3(-1)^n$, then $t_n = 3 \times 2^n + (-1)^n$, $\forall n \in \mathbb{Z}^+$.
- **9.** A sequence is defined by $u_1 = \frac{1}{3}$ and $u_{n+1} = u_n + \frac{1}{(2n+1)(2n+3)}$, $\forall n \in \mathbb{Z}^+$.
 - (a) By finding t_n for n = 2, 3 and 4, conjecture a formula for t_n in terms of n only (not recursively)
 - (b) Prove that your conjecture is true using mathematical induction.
 - (c) Find the value of t_{50} .

10. Given $(2 + \sqrt{3})^n = A_n + B_n \sqrt{3}$, $\forall n \in \mathbb{Z}^+$, where A_n and B_n are integers,

- (a) Find A_n and B_n for n = 1, 2, 3 and 4.
- (b) Without using induction, show that $A_{n+1} = 2A_n + 3B_n$ and $B_{n+1} = A_n + 2B_n$.
- (c) Calculate $(A_n)^2 3(B_n)^2$ for n = 1, 2, 3 and 4 and hence conjecture a result.
- (d) Prove that your conjecture is true.

NESA Reference Sheet – calculus based courses

NSW Education Standards Authority

2020 HIGHER SCHOOL CERTIFICATE EXAMINATION

Mathematics Advanced Mathematics Extension 1 Mathematics Extension 2

REFERENCE SHEET

Measurement

Length

 $l = \frac{\theta}{360} \times 2\pi r$

Area

 $A = \frac{\theta}{360} \times \pi r^2$ $A = \frac{h}{2} (a + b)$

Surface area

 $A = 2\pi r^2 + 2\pi rh$ $A = 4\pi r^2$

Volume

 $V = \frac{1}{3}Ah$ $V = \frac{4}{3}\pi r^3$

Functions

 $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$

For
$$ax^3 + bx^2 + cx + d = 0$$
:
 $\alpha + \beta + \gamma = -\frac{b}{a}$
 $\alpha\beta + \alpha\gamma + \beta\gamma = \frac{c}{a}$
and $\alpha\beta\gamma = -\frac{d}{a}$

Relations

 $(x-h)^{2} + (y-k)^{2} = r^{2}$

Financial Mathematics

$$A = P(1+r)^n$$

Sequences and series

$$T_{n} = a + (n - 1)d$$

$$S_{n} = \frac{n}{2} [2a + (n - 1)d] = \frac{n}{2}(a + l)$$

$$T_{n} = ar^{n-1}$$

$$S_{n} = \frac{a(1 - r^{n})}{1 - r} = \frac{a(r^{n} - 1)}{r - 1}, r \neq 1$$

$$S = \frac{a}{1 - r}, |r| < 1$$

Logarithmic and Exponential Functions

$$\log_{a} a^{x} = x = a^{\log_{a} x}$$
$$\log_{a} x = \frac{\log_{b} x}{\log_{b} a}$$
$$a^{x} = e^{x \ln a}$$

- 1 -

Trigonometric Functions Statistical Analysis $\sin A = \frac{\text{opp}}{\text{hyp}}, \quad \cos A = \frac{\text{adj}}{\text{hyp}}, \quad \tan A = \frac{\text{opp}}{\text{adj}}$ An outlier is a score $z = \frac{x - \mu}{\sigma}$ less than $Q_1 - 1.5 \times IQR$ $A = \frac{1}{2}ab\sin C$ more than $Q_3 + 1.5 \times IQR$ $\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$ Normal distribution $c^2 = a^2 + b^2 - 2ab\cos C$ $\cos C = \frac{a^2 + b^2 - c^2}{2ab}$ $\sqrt{3}$ $l = r\theta$ $A = \frac{1}{2}r^2\theta$ z Ò -3 -2 -1approximately 68% of scores have **Trigonometric identities** z-scores between -1 and 1 $\sec A = \frac{1}{\cos A}, \ \cos A \neq 0$ approximately 95% of scores have z-scores between –2 and 2 $\csc A = \frac{1}{\sin A}, \ \sin A \neq 0$ approximately 99.7% of scores have z-scores between -3 and 3 $\cot A = \frac{\cos A}{\sin A}, \ \sin A \neq 0$ $E(X) = \mu$ $Var(X) = E[(X - \mu)^2] = E(X^2) - \mu^2$ $\cos^2 x + \sin^2 x = 1$ Probability **Compound angles** $P(A \cap B) = P(A)P(B)$ $\sin(A+B) = \sin A \cos B + \cos A \sin B$ $P(A \cup B) = P(A) + P(B) - P(A \cap B)$ $\cos(A+B) = \cos A \cos B - \sin A \sin B$ $\tan(A+B) = \frac{\tan A + \tan B}{1 - \tan A \tan B}$ $P(A|B) = \frac{P(A \cap B)}{P(B)}, \ P(B) \neq 0$ If $t = \tan \frac{A}{2}$ then $\sin A = \frac{2t}{1+t^2}$ Continuous random variables $P(X \le x) = \int_{-\infty}^{+\infty} f(x) dx$ $\cos A = \frac{1-t^2}{1+t^2}$ $P(a < X < b) = \int^{b} f(x) dx$ $\tan A = \frac{2t}{1-t^2}$ $\cos A \cos B = \frac{1}{2} \left[\cos(A - B) + \cos(A + B) \right]$ **Binomial distribution** $\sin A \sin B = \frac{1}{2} \left[\cos(A - B) - \cos(A + B) \right]$ $P(X = r) = {}^{n}C p^{r}(1 - p)^{n - r}$

$$X \sim \operatorname{Bin}(n, p)$$

$$\Rightarrow P(X = x)$$

$$= {n \choose x} p^{x} (1 - p)^{n - x}, x = 0, 1, \dots, n$$

$$E(X) = np$$

$$\operatorname{Var}(X) = np(1 - p)$$

- 2 -

 $\sin A \cos B = \frac{1}{2} \left[\sin(A+B) + \sin(A-B) \right]$

 $\cos A \sin B = \frac{1}{2} \left[\sin(A+B) - \sin(A-B) \right]$

 $\sin^2 nx = \frac{1}{2}(1 - \cos 2nx)$

 $\cos^2 nx = \frac{1}{2}(1 + \cos 2nx)$

Differential Calculus

Integral Calculus

Function	Derivative	$\int c_{1}(x) \int c_{1}(x) \eta^{n} dx = \frac{1}{1} \int c_{1}(x) \eta^{n+1} dx$
$y = f(x)^n$	$\frac{dy}{dx} = nf'(x)[f(x)]^{n-1}$	$\int f'(x)[f(x)] dx = \frac{1}{n+1}[f(x)] + c$ where $n \neq -1$
y = uv	$\frac{dy}{dx} = u\frac{dv}{dx} + v\frac{du}{dx}$	$\int f'(x)\sin f(x)dx = -\cos f(x) + c$
y = g(u) where $u = f(x)$	$\frac{dy}{dx} = \frac{dy}{du} \times \frac{du}{dx}$	$\int f'(x)\cos f(x)dx = \sin f(x) + c$
$y = \frac{u}{v}$	$\frac{dy}{dx} = \frac{v\frac{du}{dx} - u\frac{dv}{dx}}{v^2}$	$\int f'(x)\sec^2 f(x)dx = \tan f(x) + c$
$y = \sin f(x)$	$\frac{dy}{dx} = f'(x)\cos f(x)$	$\int f'(x)e^{f(x)}dx = e^{f(x)} + c$
$y = \cos f(x)$	$\frac{dy}{dx} = -f'(x)\sin f(x)$	$\int f'(x) = \int f(x) dx$
$y = \tan f(x)$	$\frac{dy}{dx} = f'(x)\sec^2 f(x)$	$\int \frac{f(x)}{f(x)} dx = \ln f(x) + c$
$y = e^{f(x)}$	$\frac{dy}{dx} = f'(x)e^{f(x)}$	$\int f'(x)a^{f(x)}dx = \frac{a^{f(x)}}{\ln a} + c$
$y = \ln f(x)$	$\frac{dy}{dx} = \frac{f'(x)}{f(x)}$	$\int \frac{f'(x)}{\sqrt{a^2 - [f(x)]^2}} dx = \sin^{-1} \frac{f(x)}{a} + c$
$y = a^{f(x)}$	$\frac{dy}{dx} = (\ln a)f'(x)a^{f(x)}$	$\int f'(x) dx = \frac{1}{\tan^{-1}}f(x) + c$
$y = \log_a f(x)$	$\frac{dy}{dx} = \frac{f'(x)}{(\ln a)f(x)}$	$\int \frac{1}{a^2 + [f(x)]^2} dx = \frac{1}{a} \tan \frac{1}{a} + c$
$y = \sin^{-1} f(x)$	$\frac{dy}{dx} = \frac{f'(x)}{\sqrt{1 - \left[f(x)\right]^2}}$	$\int u \frac{dv}{dx} dx = uv - \int v \frac{du}{dx} dx$
$y = \cos^{-1} f(x)$	$\frac{dy}{dx} = -\frac{f'(x)}{\sqrt{1 - [f(x)]^2}}$	$\int_{a}^{b} f(x) dx$
$y = \tan^{-1} f(x)$	$\frac{dy}{dx} = \frac{f'(x)}{1 + \left[f(x)\right]^2}$	$\approx \frac{b-a}{2n} \Big\{ f(a) + f(b) + 2 \Big[f(x_1) + \dots + f(x_{n-1}) \Big] \Big\}$ where $a = x_0$ and $b = x_n$
	_ ^	3 -

Combinatorics

$${}^{n}P_{r} = \frac{n!}{(n-r)!}$$

$$\binom{n}{r} = {}^{n}C_{r} = \frac{n!}{r!(n-r)!}$$

$$(x+a)^{n} = x^{n} + \binom{n}{1}x^{n-1}a + \dots + \binom{n}{r}x^{n-r}a^{r} + \dots + a^{n}$$

Vectors

$$\begin{aligned} |\underline{u}| &= \left| x\underline{i} + y\underline{j} \right| = \sqrt{x^2 + y^2} \\ \underline{u} \cdot \underline{v} &= \left| \underline{u} \right| \left| \underline{v} \right| \cos \theta = x_1 x_2 + y_1 y_2, \\ \text{where } \underline{u} &= x_1 \underline{i} + y_1 \underline{j} \\ \text{and } \underline{v} &= x_2 \underline{i} + y_2 \underline{j} \\ \underline{r} &= \underline{a} + \lambda \underline{b} \end{aligned}$$

Complex Numbers

 $z = a + ib = r(\cos \theta + i\sin \theta)$ $= re^{i\theta}$ $\left[r(\cos \theta + i\sin \theta)\right]^n = r^n(\cos n\theta + i\sin n\theta)$ $= r^n e^{in\theta}$

Mechanics

 $\frac{d^2x}{dt^2} = \frac{dv}{dt} = v\frac{dv}{dx} = \frac{d}{dx}\left(\frac{1}{2}v^2\right)$ $x = a\cos(nt + \alpha) + c$ $x = a\sin(nt + \alpha) + c$ $\ddot{x} = -n^2(x - c)$

– 4 –

© 2018 NSW Education Standards Authority

References

- Brown, P. G. (2008). Mathematical Induction. Parabola, 44(1).
- Fitzpatrick, J. B. (1984). New Senior Mathematics Three Unit Course for Years 11 & 12. Harcourt Education.
- Fitzpatrick, J. B., & Aus, B. (2018). New Senior Mathematics Extension 1 for Years 11 & 12. Pearson Education.
- Haese, M., Haese, S., & Humphries, M. (2015a). Mathematics for Australia 11 Mathematical Methods (2nd ed.). Haese Mathematics.
- Haese, M., Haese, S., & Humphries, M. (2015b). Mathematics for Australia 11 Specialist Mathematics (2nd ed.). Haese Mathematics.
- Pender, W., Sadler, D., Ward, D., Dorofaeff, B., & Shea, J. (2019). CambridgeMATHS Stage 6 Mathematics Extension 1 Year 12 (1st ed.). Cambridge Education.
- Sadler, D., & Ward, D. (2019). CambridgeMATHS Stage 6 Mathematics Extension 2 (1st ed.). Cambridge Education.